Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.02.14.580225

ABSTRACT

The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-g+TNF-a+CD4+ and CD69+IFN-g+TNFa+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.


Subject(s)
Coronavirus Infections , Infections , Death , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.30.478343

ABSTRACT

SARS-CoV-2-specific memory T cells that cross-react with common cold coronaviruses (CCCs) are present in both healthy donors and COVID-19 patients. However, whether these cross-reactive T cells play a role in COVID-19 pathogenesis versus protection remain to be fully elucidated. In this study, we characterized cross-reactive SARS-CoV-2-specific CD4+ and CD8+ T cells, targeting genome-wide conserved epitopes in a cohort of 147 non-vaccinated COVID-19 patients, divided into six groups based on the degrees of disease severity. We compared the frequency, phenotype, and function of these SARS-CoV-2-specific CD4+ and CD8+ T cells between severely ill and asymptomatic COVID-19 patients and correlated this with alpha-CCCs and beta-CCCs co-infection status. Compared with asymptomatic COVID-19 patients, the severely ill COVID-19 patients and patients with fatal outcomes: (i) Presented a broad leukocytosis and a broad CD4+ and CD8+ T cell lymphopenia; (ii) Developed low frequencies of functional IFN-gamma-producing CD134+CD138+CD4+ and CD134+CD138+CD8+ T cells directed toward conserved epitopes from structural, non-structural and regulatory SARS-CoV-2 proteins; (iii) Displayed high frequencies of SARS-CoV-2-specific functionally exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells; and (iv) Displayed similar frequencies of co-infections with beta-CCCs strains but significantly fewer co-infections with alpha-CCCs strains. Interestingly, the cross-reactive SARS-CoV-2 epitopes that recalled the strongest CD4+ and CD8+ T cell responses in unexposed healthy donors (HD) were the most strongly associated with better disease outcome seen in asymptomatic COVID-19 patients. Our results demonstrate that, the critically ill COVID-19 patients displayed fewer co-infection with alpha-CCCs strain, presented broad T cell lymphopenia and higher frequencies of cross reactive exhausted SARS-CoV-2-specific CD4+ and CD8+ T cells. In contrast, the asymptomatic COVID-19 patients, appeared to present more co-infections with alpha-CCCs strains, associated with higher frequencies of functional cross-reactive SARS-CoV-2-specific CD4+ and CD8+ T cells. These findings support the development of broadly protective, T-cell-based, multi-antigen universal pan-Coronavirus vaccines.


Subject(s)
von Willebrand Disease, Type 3 , Coinfection , Lymphopenia , Critical Illness , Parkinson Disease , Common Cold , Leukocytosis , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL